Гиперзвуковая революция
Достижения России в области гиперзвукового оружия надо наращивать. Об этом заявил президент Валдимир Путин 25 мая на совещании с высшим руководством Минобороны и представителями оборонно-промышленного комплекса (ОПК) в Сочи. «Нам необходимо развивать этот мощный задел, которым обладает Россия», - сказал Путин. Он напомнил, что российские Вооружённые Силы первыми в мире получили гиперзвуковое оружие, в том числе уникальный ракетный комплекс межконтинентальной дальности «Авангард» с планирующим крылатым блоком. В рамках несения боевого дежурства уже более 160 полётов выполнено авиационным ракетным комплексом «Кинжал» с гиперзвуковой ракетой.
Россия является мировым лидером в создании систем высокоточного гиперзвукового оружия и продолжает множить список своих новых разработок в этой области. Так, научно-производственный концерн «Техмаш» (входит в состав Ростеха) приступил к макетным испытаниям новой высокоточной ракеты «Монолит». Одновременно в 2023 году корпорация «Тактическое ракетное вооружение» должна завершить испытания дальнобойной гиперзвуковой ракеты «Гремлин». А машиностроительное КБ «Радуга» имени А.Я.Березняка на 2022 год уже запланировало начало летных испытаний гиперзвуковой ракеты воздушного базирования под условным шифром «Острота».
Что стоит за таким скачком в создании сразу нескольких новых систем авиационного оружия, «Армейскому стандарту» рассказал военный эксперт.
Если говорить о высокоточной ракете «Монолит», то о ней пока мало что известно. По словам исполнительного директора «Техмаша» Александра Кочкина, эта новинка 122-миллиметрового калибра пока создается на предприятии в инициативном порядке. Этап ее разработки — эскизно-техническое проектирование и стендовые испытания. На этом этапе работ конструкторская группа на макете уточняет и дорабатывает основные технические характеристики новой ракеты.
Если результат окажется положительным, а в этом на предприятии никто не сомневается, следующим этапом станет проработка с государственным заказчиком вопросов финансирования проекта, а также определение сроков опытно-конструкторских работ.
Другой по-настоящему прорывной проект, благодаря которому, как считают эксперты, российские ВВС серьезно повысят свой статус сил неядерного сдерживания, это дальняя гиперзвуковая ракета. Работы над ней ведутся под шифром «Гремлин». Ее испытания должны завершиться в 2023 году.
По информации специалистов, ракета имеет небольшие габариты, длина не превышает 4,5 метра. То есть она не больше самых крупных отечественных ракет «воздух-воздух». Одновременно это означает, что «Гремлин» существенно компактней известного всем знаменитого «Кинжала».
Носителем для ракеты «Гремлин» должен стать самолет 5-го поколения Су-57. Тестирование массогабаритных макетов новой ракеты проводилось именно на этом самолете. Во время испытаний бортовой электроники ракеты подвешивали как снаружи, так и внутри фюзеляжа.
Что касается боевой части ракеты «Гремлин», то, исходя из ее габаритов, их малый размер вряд ли предполагает ядерное оснащение. Скорее всего, это будет фугасный боезаряд с высокой проникающей способностью.
Известно также, что ракета имеет самонаводящуюся головку с активным и пассивным режимом работы, по типу той, что используется в противокорабельных ракетах Х-35.
Кроме того, Тураевское машиностроительное конструкторское бюро «Союз» (входит в корпорацию «Тактическое ракетное вооружение», КТРВ) изготовило для ракеты «Гремлин» опытный образец двигателя. Пока проект реализуется под шифром «изделие 70». Предположительно, с этим двигателем максимальная скорость новой гиперзвуковой ракеты при дальности до 1500 км может достигать 5–6 Махов, то есть в 5 раз превзойдет скорость звука.
Как очередное достижение отечественного ракетостроения ряд СМИ отмечает и другой новый прямоточный воздушно-реактивный двигатель с обозначением «изделие 71» того же Тураевского КБ «Союз». Он предназначен для еще одной российской новинки — малогабаритной гиперзвуковой ракеты «Острота». По словам экспертов, высокоточное оружие будет способно наносить неотразимые удары по наиболее важным и самым защищенным объектам противника.
Официального названия эта ракета пока не имеет. «Острота» — ее шифр, под которым ведутся опытно-конструкторские работы. Отмечается, что боеприпас сможет применяться в качестве вооружения как дальних бомбардировщиков Ту-22М3, так и оперативно-тактических самолетов Су-34.
«Это изобретение пороха»
Можно ли считать качественным и количественным скачком то, что сейчас происходит в России в области создания авиационных средств поражения? Вот как ответил на этот вопрос один из ведущих российских военных экспертов, аналитик, редактор издания «Арсенал Отечества» Алексей Леонков:
— Когда Россия освоила технологию управляемого гиперзвукового полета в атмосфере, а это произошло в 2018 году, сразу было понятно, что она на этом останавливаться не будет, — заявил эксперт. — Технология управляемого гиперзвукового полета — это как в свое время технология пороха, которая когда-то перевернула все военное оперативное искусство. С использованием пороха появились новые виды вооружений. Революционная технология создания пороха стала отправной точкой для эволюции развития военного дела в целом.
— С гиперзвуком теперь происходит то же самое?
— Конечно. Управляемый гиперзвуковой полет, который изначально был у нас только на нескольких комплексах, теперь будет переходить и на другие типы вооружений, так как главная задача, которую ставил Верховный главнокомандующий военно-промышленному комплексу, — встречать вероятного противника на дальних рубежах, бить его быстро, высокоточно.
Вот для этого самого «быстро» как раз и предполагались гиперзвуковые комплексы, которые с высокой скоростью должны долетать до своих наземных и воздушных целей. Кстати, у нас уже были комплексы ПВО, имеющие свои ракеты, которые летают на скорости два с половиной километра в секунду. У комплекса С-400 есть целое семейство таких ракет.
— Что нового гиперзвуковые скорости привнесли в современную военную стратегию?
— Раньше у нас главным сдерживающим фактором было только ядерное оружие. Теперь у нас таких фактора два. Второй новый и более перспективный — сдерживание неядерным высокоточным оружием.
К такому оружию относятся известные всем уже комплексы «Циркон» и «Кинжал». Понятное дело, что иметь на вооружении только два типа таких ракет как-то маловато. К тому же у этих комплексов не так уж много носителей. А значит, надо развивать и другие системы. Создавать наземные образцы, расширять линейку воздушных комплексов. «Кинжал» и «Циркон» — это в принципе два вида высокоточного гиперзвукового оружия, которое работает в основном по морским целям. В качестве дополнения к ним, конечно, могут быть добавлены еще и наземные цели. Однако теперь нужно создавать и комплексы, для которых задача прорыва ПВО, усиленной комплексами радиоэлектронной борьбы, будет ключевой.
И такого рода комплексы скоро появятся. Это будут маневренные авиационные ракеты, которые запускаются с авиационных носителей из состава фронтовой и бомбардировочной авиации. И работать они будут по наземным объектам.
— По каким именно? Что для них окажется в приоритете?
— Самые главные цели для такого рода оружия — это важные объекты военной инфраструктуры противника: штабы, узлы связи, места сосредоточения военной техники, позиции оперативно-тактических ракет и ракет средней дальности, основные коммуникации, к примеру те же самые мосты.
Наши авиационные комплексы получат свой гиперзвуковой арсенал. Он станет своего рода эволюционным развитием тех систем, что мы уже имеем на вооружении. Примерно так же в свое время получили развитие лазерные комплексы, которые сейчас у нас входят как дополняющая часть в противовоздушную оборону.
— Ракеты «Гремлин» и «Острота» как раз такое эволюционное развитие технологии гиперзвукового управляемого полета?
— Да, это как раз эволюционное развитие абсолютно революционных технологий. По-другому гиперзвуковые скорости, пожалуй, и не назовешь. И это в принципе очень правильно потому, что освоение технологий, к которой мы шли почти 50 лет, понятное дело, оказалось очень затратным. Теперь эти затраты должны себя оправдать. И оправданными они могут быть только в качестве надежного защитника российского суверенитета.
И пламенный мотор
Одним из моментов, на который специалисты, рассказывая о гиперзвуковых новинках, обращают внимание, это двигатели ракет, изготовленные в Тураевском машиностроительном конструкторском бюро «Союз» из корпорации «Тактическое ракетное вооружение». В частности, речь идет о так называемом «изделии 71» — прямоточном воздушно-реактивном двигателе ракеты «Острота». Почему разработку «изделия 71» отмечают отдельно и в чем ее принципиальное отличие от предыдущих?
— Освоение гиперзвуковых скоростей шло двумя путями: либо с упором на ракетные технологии, либо на авиационные, — поясняет Алексей Леонков. — И те, и другие предполагали создание двигателей, которые могли бы разгонять изделия до гиперзвуковых скоростей. До недавних пор гиперзвуковые скорости обеспечивали исключительно ракетные двигатели.
Еще в советские времена конструкторы, которые двигали вперед авиационные технологии на основе проводимого моделирования, утверждали, что нужно создавать прямоточный двигатель. То есть такой, который работает за счет набегающего потока воздуха. Далее воздух, попав во входное устройство, проходя через различные камеры — сгорания, форсажа, — раскручивается, создает соответствующие потоки, благодаря чему тяга движка увеличивается, и он получает возможность толкать изделие с гиперзвуковой скоростью.
— Это сложная технология?
— Конечно. Поэтому у нас при создании двигателя для гиперзвуковых комплексов в первую очередь и пошли по пути ракетной технологии. Только потом, когда на этой основе получили результаты успешных испытаний новых изделий с технологией управляемого гиперзвукового полета, когда появились новые материалы — вся эта экспериментальная база способствовала продвижению уже более сложной авиационной технологии.
— Получается, в технологии двигателестроения Россия тоже совершила огромный скачок?
— В традиционных турбореактивных двигателях в зоне горения, там, где происходит сжигание авиационного топлива, максимальный поток скорости составляет примерно 1 Мах. Дальше за счет различных контуров, лопаток скоростной поток на выходе увеличивается.
То есть на входе он как бы немного затормаживается, чтобы не сорвать пламя, а затем увеличивается. Потому у обычных авиационных турбореактивных двигателей был предел скоростей. Он колебался в районе 3–4 чисел Маха. А дальше нужно было совершить прорыв. И наши конструкторы его совершили.
У нас теперь появился детонационный двигатель, испытания которого прошли в 2019–2020 годах. Это стало как раз той самой необходимой компонентой для создания прямоточного двигателя, на который больше не действуют прежние скоростные ограничения. Кстати, тогда же было сразу заявлено, что он будет использоваться в гиперзвуковых технологиях.
— И теперь, судя по всему, прошли испытания этого двигателя вместе с новыми гиперзвуковыми ракетами? Почему именно прямоточный воздушно-реактивный двигатель?
— Потому что там приходится менять режимы полета. У ракетного двигателя это обычно можно сделать два раза. Допустим, в начале лететь на малой скорости, а потом резко ее увеличить до гиперзвуковой. У этого двигателя есть такие режимы полета.
Здесь же в новом прямоточном двигателе, скорее всего, будут осуществляться более сложные режимы, когда двигатель несколько раз сможет менять свои параметры, но при этом они всегда будут оставаться в рамках гиперзвуковых скоростей. Для этого он и нужен, чтобы получилась маневрирующая ракета с гиперзвуковой скоростью.
Это, кстати, мечта американцев. Они свою ракету AGM-183 как раз по такой технологии и создают. Точнее, пытаются создавать. Пока не получается.
— Выходит, мы их опередили?
— Естественно. У нас вообще в двигателестроении многое изменилось. Если помните, одно время наших двигателистов очень ругали. Говорили, что они отстали от передовой Европы.
— Но ведь справедливо же ругали...
— А потом у нас произошла тихая революция. В двигателестроение пришли новые материалы, новые технологии.
— …И новые люди, которые сумели совершить такую революцию в отличие от той же ОАК?
— Да. Ситуация в Объединенной двигателестроительной корпорации у нас сейчас принципиально другая, нежели в остальных подобных суперхолдингах. Очень удачно, что ею с 2015 года руководит Александр Артюхов — человек от производства. Я его не раз встречал. Он такой немногословный, интервью особо давать не любит.
— Просто делом занят. А многие ведь не верили, что после лихих 90-х и тяжелых 2000-х, когда с кровью рвались связи с украинскими двигателистами, мы когда-нибудь сами сможем в двигателестроении чего-то достичь.
— Но теперь наши авиационные двигатели ни в чем не уступают зарубежным аналогам, а многие их даже превосходят. Могу подтвердить. Мне много раз приходилось посещать заводы, где создаются двигатели. Все поменялось кардинально. И молодежь там есть, и с кадрами все нормально. И на технологии, которые они там применяют, смотришь — и прямо душа радуется. Представляете, они сумели исправить даже старые движки!
Вот у нас, когда в 1976 году летчик-перебежчик угнал в Японию наш советский перехватчик МиГ-25П с кучей секретной на тот момент аппаратуры на борту, то нам нужно было срочно создавать другую машину. Следующим проектом у нас был МиГ-31. Работа над ним двигалась по определенному графику, но после того ЧП руководство страны требовало ускорить работу над ним. И 31-й тогда фактически делали «на скорую руку».
Главным тормозом стал двигатель. Точнее, на тот момент его просто не было. И тогда на самолет МиГ-31 поставили доработанный Д-30 от самолета Ту-134. Добавили ему форсажную камеру и вот такой гибрид засунули в истребитель-перехватчик МиГ-31.
Если посмотреть статистику авиационных катастроф МиГ-31, то все они связаны именно с работой того самого двигателя, так как он получился очень ненадежный.
Так вот теперь наши ребята на Пермском заводе благодаря новым технологиям практически переформатировали его. Сумели переделать так, что всякого рода неисправностей на нем уже просто нет. И это только один пример, я уже не говорю про многие другие.
Сейчас у наших двигателистов моделирование происходит исключительно в 3D. Представляете, они там в 3D проверяют потоки прохождения воздуха в двигателе. То есть двигатель воздух забирает, а потом конструкторы на 3D-модели в любой точке проверяют и исправляют различные характеристики. Лопатки переделывают, другие комплектующие. И лишь когда добиваются в 3D-модели нужного результата, только после этого все идет в металл. А это значит, что многие ошибки исключаются уже на этапе проектирования.
Нечасто такое приходится говорить, но то, что сейчас у нас происходит в двигателестроении, — это просто фантастика! Во многом благодаря этим людям мы сегодня по гиперзвуковым технологиям первые в мире.
Справка «АС»
Впервые о российской гиперзвуковой планирующей боеголовке, способной маневрировать после отделения от носителя, мир узнал из выступления президента Владимира Путина 1 марта 2018 года. Он сообщил об этом оружии в Послании Федеральному собранию. До этого ни одна страна в мире, включая США, не обладала технологией управляемого гиперзвукового полета в атмосфере. Новая технология принципиально меняла соотношение между средствами нападения и существующей противоракетной обороной (ПРО).
С момента первых запусков противоракет в 70-е годы алгоритм действий ПРО не менялся: наземные и орбитальные средства наблюдения фиксировали старт ракеты, определяли ее баллистическую траекторию и наводил противоракету в нужную точку, где она должна встретить ракету или боевой блок противника. Освоение технологий управляемого гиперзвукового полета в атмосфере весь это порядок действий сводил на нет. Автоматика уже не знает, куда направлять противоракету.
Пока боевые маневрирующие боевые блоки «Авангард» устанавливаются на старые баллистические ракеты РС-18 (по западной классификации SS-19, «Стилет»). Ожидается, что этими блоками оснастят новую тяжелую жидкостную ракету «Сармат».
Справка «АС»
Авиационно-ракетный комплекс «Кинжал» также был анонсирован Путиным в 2018 году. Сегодня он несет боевое дежурство. В качестве носителя используется прошедший специальную модернизацию высотный перехватчик МиГ-31К. Ожидается, что в перспективе гиперзвуковые ракеты «Кинжал» смогут нести также дальние бомбардировщики Ту-22М3. Высокоточные гиперзвуковые ракеты не способны перехватить имеющиеся корабельные комплексы ПВО.